# BAGOUGERAMINES A AND B, NEW NUCLEOSIDE ANTIBIOTICS PRODUCED BY A STRAIN OF *BACILLUS CIRCULANS*

## II. PHYSICO-CHEMICAL PROPERTIES AND STRUCTURE DETERMINATION

## Atsushi Takahashi, Daishiro Ikeda, Hiroshi Naganawa, Yoshiro Okami and Hamao Umezawa

Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication March 6, 1986)

Bagougeramines A and B obtained as sulfates were soluble in water and positive to Sakaguchi, chlorine-tolidine and ninhydrin color reactions. Their structures were determined by acid hydrolysis and spectroscopic analysis. Structurally they were closely related to gougerotin and they contained the guanidino-D-alanine instead of the serine residue in gougerotin. Bagougeramine B had the spermidine instead of the 6'-NH<sub>2</sub> in structure of bagougeramine A.

In the preceding paper<sup>1</sup>, we reported that bagougeramines A and B which had antimicrobial and anti-mite activities were produced by *Bacillus circulans* TB-2125. The producer had unique physiological properties and the moving colonies on agar plate as described as "swarming".

In this report, we describe the physico-chemical properties and structural elucidation of bagougeramines A and B.

### **Results and Discussion**

Physico-chemical Properties of Bagougeramines A and B

As summarized in Table 1, the sulfates of bagougeramines A (1) and B (2) isolated from the fermentation broth of *B. circulans* TB-2125<sup>1)</sup> were white hygroscopic powders which were soluble in water and positive to Sakaguchi and chlorine-tolidine reactions. UV spectra (Fig. 2) of antibiotics showed the presence of  $N^1$ -substituted cytosine nucleus in their structures. The IR spectra were shown in Fig. 3. Molecular formulas of bagougeramines A (1) and B (2) were determined as  $C_{17}H_{28}N_{10}O_7$  and

Fig. 1. Structures of bagougeramines and gougerotin.



|                                               | Bagougeramine A                                                | Bagougeramine B                                        |
|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| Appearance                                    | White hygroscopic powder                                       | White hygroscopic powder                               |
| MP                                            | 230°C (dec)                                                    | 237°C (dec)                                            |
| Optical rotation                              | +34.1° (c 0.5, 27°C)                                           | $+22.1^{\circ}$ (c 0.5, 26°C)                          |
| $UV_{max}$ ( $E_{1cm}^{1\%}$ ) nm             |                                                                |                                                        |
| Neutral                                       | 232 (119), 265 (121)                                           | 232 (101), 265 (102)                                   |
| 0.1 N HCl                                     | 274 (171)                                                      | 274 (143)                                              |
| 0.1 N NaOH                                    | 235 (s), 265 (122)                                             | 235 (s), 265 (106)                                     |
| MW, SI-MS                                     | <i>m</i> / <i>z</i> 485 (MH <sup>+</sup> )                     | <i>m</i> / <i>z</i> 613 (MH <sup>+</sup> )             |
| Molecular formula                             | $C_{17}H_{23}N_{10}O_7 \cdot 1\tfrac{1}{2}H_2SO_4 \cdot 3H_2O$ | $C_{24}H_{44}N_{12}O_7\!\cdot\!2H_2SO_4\!\cdot\!6H_2O$ |
| Elemental analyses                            |                                                                |                                                        |
| Found:                                        | C 29.83, H 5.54, N 20.19, S 7.04                               | C 31.92, H 6.47, N 17.71, S 7.55                       |
| Calcd:                                        | C 29.78, H 5.40, N 20.44, S 7.07                               | C 31.75, H 6.50, N 18.52, S 7.06                       |
| Solubility                                    |                                                                |                                                        |
| Soluble:                                      | $H_2O$                                                         | $H_2O$                                                 |
| Insoluble:                                    | MeOH, EtOH, acetone                                            | MeOH, EtOH, acetone                                    |
| Color reaction                                |                                                                |                                                        |
| Positive:                                     | Sakaguchi, chlorine-tolidine,<br>ninhydrin*                    | Sakaguchi, chlorine-tolidine,<br>ninhydrin             |
| Negative:                                     | Anisaldehyde-H <sub>2</sub> SO <sub>4</sub>                    | Anisaldehyde-H <sub>2</sub> SO <sub>4</sub>            |
| Rf value on cellulose<br>TLC** (5718, Merk)   | 0.24                                                           | 0.15                                                   |
| High voltage paper<br>electrophoresis*** (Rm) | 1.62 (Ala 1.00)                                                | 1.89 (Ala 1.00)                                        |

Table 1. Physico-chemical properties of the sulfates of bagougeramines A and B.

\* Weakly positive.

\*\* Solvent; PrOH - pyridine - AcOH - H<sub>2</sub>O (15: 10: 3: 12).

\*\*\* Formic acid - AcOH - H<sub>2</sub>O (1: 3: 36), 3,000 V, 20 minutes.



Fig. 2. UV spectra of the sulfates of bagougeramines A and B.

![](_page_2_Figure_2.jpeg)

Fig. 3. IR spectra of the sulfates of bagougeramines A and B (KBr).

Table 2. <sup>1</sup>H NMR data of bagougeramine A (1), bagougeramine B (2) and C-substance (3) in D<sub>2</sub>O.

|                    | Chemical shifts ( $\delta$ value in ppm) and coupling constants (Hz) |        |                           |        |                         |  |
|--------------------|----------------------------------------------------------------------|--------|---------------------------|--------|-------------------------|--|
| Proton _           | 1                                                                    |        | 2                         |        | 2                       |  |
|                    | pD 5.0                                                               | pD 9.2 | pD 5.0                    | pD 8.8 | 3                       |  |
| 5                  | 6.14 (d, <i>J</i> =7.7)                                              | 6.13   | 6.15 (d, <i>J</i> =7.2)   | 6.15   | 6.11 (d, <i>J</i> =7.4) |  |
| 6                  | 7.83 (d, $J=7.7$ )                                                   | 7.81   | 7.81 (d, $J=7.2$ )        | 7.82   | 7.74 (d, $J=7.4$ )      |  |
| 1'                 | 5.76 (d, J=9.3)                                                      | 5.75   | 5.73 (d, <i>J</i> =9.3)   | 5.73   | 5.73 (d, J=9.6)         |  |
| 2′                 | 3.92 (m)                                                             | 3.90   | 3.93 (m)                  | 3.93   | 3.82 (t, J=9.6, 10.1)   |  |
| 3'                 | 3.86 (m)                                                             | 3.86   | 3.90 (m)                  | 3.88   | 3.88 (t, J=10.1, 10.1)  |  |
| 4'                 | 4.12 (t, <i>J</i> =10.7, 10.7)                                       | 4.11   | 4.09 (t, J=10.3, 10.4)    | 4.11   | 3.31 (t, J=10.1, 11.5)  |  |
| 5'                 | 4.20 (d, J=10.7)                                                     | 4.20   | 4.23 (d, $J = 10.4$ )     | 4.21   | 4.20 (d, J=11.5)        |  |
| Sarcosine          |                                                                      |        |                           |        |                         |  |
| 2                  | 4.01 (ABq)                                                           | 3.41   | 4.05 (ABq)                | 3.54   |                         |  |
| NCH <sub>3</sub>   | 2.82 (s)                                                             | 2.38   | 2.82 (s)                  | 2.45   |                         |  |
| G-Ala <sup>a</sup> |                                                                      |        |                           |        |                         |  |
| 2 <sup>b</sup>     | 4.78  (dd, J = 6.0, 7.0)                                             | 4.78   | 4.78  (dd, J = 5.2, 8.0)  | 4.78   |                         |  |
| 3-a                | 3.56 (dd, J=7.0, 15.0)                                               | 3.52   | 3.54 (dd, J = 8.0, 14.7)  | ~3.54  |                         |  |
| 3-b                | 3.68 (dd, J=6.0, 15.0)                                               | 3.68   | 3.70  (dd, J = 5.2, 14.7) | 3.70   |                         |  |
| Spermidine         |                                                                      |        |                           |        |                         |  |
| 1-a                |                                                                      |        | 3.20 (dt, J=6.9, 13.9)    | 3.22   |                         |  |
| 1-b                |                                                                      |        | 3.36 (dt, J=6.9, 13.9)    | 3.33   |                         |  |
| 2                  |                                                                      |        | 1.91 (m)                  | 1.87   |                         |  |
| 3, 5, 8            |                                                                      |        | 3.07 (m)                  | 3.01   |                         |  |
| 6, 7               |                                                                      |        | 1.78 (m)                  | 1.75   |                         |  |

<sup>a</sup> Guanidino-D-alanine.

<sup>b</sup> Measured at 40°C.

 $C_{24}H_{44}N_{12}O_7$ , respectively, by elemental analyses and secondary ion mass spectra of their sulfates. Their <sup>1</sup>H and <sup>13</sup>C NMR data were listed in Tables 2 and 3.

### Structures of Bagougeramines A and B

In the <sup>1</sup>H NMR spectrum (Table 2) of bagougeramine B (2) (sesquisulfate,  $D_2O$ ), two doublets at  $\delta$  7.81 and 6.15 were easily recognizable to be due to the cytosine nucleus. An anomeric proton was observed at  $\delta$  5.73 (d, J=9.3 Hz). *N*-Methyl

Table 3. <sup>13</sup>C NMR data for bagougeramine A (1) and bagougeramine B (2).

| Carbon*          | Chemical shift (ppm)  |                     |  |  |
|------------------|-----------------------|---------------------|--|--|
| Carbon           | 1 (pD 5.0)            | <b>2</b> (pD 5.0)   |  |  |
| 2                | 158.2 or<br>158.7 s** | 158.2 or<br>158.6 s |  |  |
| 4                | 167.1 s               | 167.0 s             |  |  |
| 5                | 98.1 d                | 98.1 d              |  |  |
| 6                | 142.7 d               | 143.0 d             |  |  |
| 1'               | 84.3 d                | 84.7 d              |  |  |
| 2'               | 72.2 d                | 72.0 d              |  |  |
| 3'               | 74.3 d                | 74.4 d              |  |  |
| 4'               | 54.3 d                | 54.3 d              |  |  |
| 5'               | 76.8 d                | 77.3 d              |  |  |
| 6'               | 167.7 s               | 167.7 s             |  |  |
| Sarcosine        |                       |                     |  |  |
| 1                | 171.6 or<br>172.8 s   | 170.4 or<br>171.6 s |  |  |
| 2                | 50.6 t                | 50.6 t              |  |  |
| NCH <sub>3</sub> | 34.1 q                | 34.1 q              |  |  |
| G-Ala            |                       |                     |  |  |
| 1                | 171.6 or<br>172.8 s   | 170.4 or<br>171.6 s |  |  |
| 2                | 53.3 d                | 53.5 d              |  |  |
| 3                | 43.1 t                | 43.3 t              |  |  |
| NCN<br>  <br>N   | 158.2 or<br>158.7 s   | 158.2 or<br>158.6 s |  |  |
| Spermidine       |                       |                     |  |  |
|                  |                       | (23.4 t             |  |  |
| 2, 6, 7          |                       | 25.0 t              |  |  |
|                  |                       | (26.2 t             |  |  |
|                  |                       | (37.2 t             |  |  |
| 1358             |                       | 39.8 t              |  |  |
| 1, 5, 5, 6       |                       | )46.1 t             |  |  |
|                  |                       | (47.9 t             |  |  |

 Assignments of carbons were based on comparison of their chemical shifts with those of gougerotin in the literature<sup>10</sup>.

\*\* Multiplicity.

![](_page_3_Figure_9.jpeg)

![](_page_3_Figure_10.jpeg)

Fig. 5. HPLC of diastereomeric thiourea derivatives of guanidinoalanine with GITC\* as a chiral reagent.

A: Guanidino-DL-alanine synthesized according to the method described by TAKAGI *et al.*<sup>(3)</sup>, B: guanidino-L-alanine (Sigma), C: acid hydrolysis product (**6**, guanidino-D-alanine).

Column: SSC-ODS-276 ( $6 \times 200$  mm). Mobile phase: MeOH - 10 mm phosphate buffer, pH 2.8 (45:55). Flow rate: 1.0 ml/minute. Detection: UV 250 nm.

 \* 2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate<sup>9</sup>.

![](_page_3_Figure_15.jpeg)

protons at  $\delta$  2.82 and isolated methylene protons at  $\delta$  4.05 (ABq) indicated that **2** had a sarcosyl residue. The presence of a spermidine moiety was indicated by methylene signals at  $\delta$  1.78 (4H, m), 1.91 (2H, m), 3.07 (6H, m), 3.20 and 3.36 (each 1H, dt). Spin decoupling experiment indicated that signals at  $\delta$  3.20 and 3.36 were 1-CH<sub>2</sub> protons of the spermidine moiety linked to the 6'-CO group through the amide bond. Furthermore, signals at  $\delta$  4.78 (1H, dd), 3.54 (1H, dd, ABX) and 3.70 (1H, dd, ABX) indicated the presence of guanidinoalanyl residue ( $\alpha$ -amino- $\beta$ -guanidinopropionyl residue).

Acid hydrolysis of 2 (hydrochloride) with 6 N HCl at 100°C, followed by purification of its hydrolysate by column chromatographies on Sephadex LH-20 and Amberlite CG-50 (NH<sub>4</sub><sup>+</sup>) gave compounds 3, 4, 5 and 6 (Fig. 4).

A ninhydrin-positive compound 3 was obtained as needles:  $[\alpha]_D^{25} + 4^\circ$  (H<sub>2</sub>O); SI-MS m/z 287 (MH<sup>+</sup>). The <sup>1</sup>H NMR spectrum of 3 (Table 2) revealed that 3 was identical with *C*-substance<sup>2,3)</sup> which was a degradation product of gougerotin.

Compound 4 was identical with spermidine by SI-MS m/z 146 (MH<sup>+</sup>), <sup>1</sup>H and <sup>13</sup>C NMR. This was confirmed by a direct comparison with an authentic sample of spermidine on TLC.

All physico-chemical data of 5 were consistent with those of sarcosine.

Compound 6, which was positive to Sakaguchi and ninhydrin tests, was obtained as a hygroscopic hydrochloride:  $[\alpha]_{D}^{23} - 12.5^{\circ}$  (H<sub>2</sub>O), SI-MS m/z 147 (MH<sup>+</sup>). In the <sup>1</sup>H NMR spectrum, a methine proton at  $\delta$  3.99 (t) and methylene proton at  $\delta$  3.77 (d) were observed. The <sup>13</sup>C NMR spectrum of 6 showed four carbon signals at  $\delta$  172.3 (C=O), 158.2 (NC(=NH)NH<sub>2</sub>), 54.6 (CHN) and 42.5 (CH<sub>2</sub>N). From these data, compound 6 was determined as guanidino-D-alanine. An authentic sample of guanidino-L-alanine hydrochloride (Sigma Chem., Co.) showed  $[\alpha]_{D}^{22} + 14.6^{\circ}$  (H<sub>2</sub>O). The absolute structure of compound 6 was confirmed by HPLC for enantiomeric resolution of amino acid<sup>4</sup>) in comparison with synthetic guanidino-DL-alanine<sup>5</sup> and authentic L-enantiomer. Fig. 5 indicates that the peak of compound 6 (7.22 minutes) was superimposable with that of D-enantiomer while an authentic sample of L-enantiomer migrated at 7.90 minutes.

Comparing the <sup>1</sup>H NMR spectrum of **2** with that of **3**, H-4' signal in **2** shifted downfield from the corresponding signal in **3** (from  $\delta$  3.31 to 4.09, Table 2). The <sup>1</sup>H NMR spectra of **2** in D<sub>2</sub>O at pD 8.8 showed that the *N*-methyl and methylene signals in a sarcosyl moiety shifted upfield by 0.37 and 0.51 ppm, respectively, compared with those at pD 5.0 (Table 2). Therefore, compound **2** incorporated a sarcosyl (guanidino-D-alanyl) residue at the 4'-amino group.

Thus, the structure of bagougeramine B was determined to be 2 as shown in Fig. 1.

By refluxing in  $6 \times HCl$ , compound 1 afforded three fragments, C-substance (3), sarcosine (5), and guanidino-D-alanine (6). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 1 were quite similar to those of 2 except for the lack of signals for the spermidine moiety. Thus, bagougeramine A was determined as shown in Fig. 1.

These structural studies of bagougeramines A and B revealed that they were new cytosine-nucleoside antibiotics with an unusual amino acid, guanidino-D-alanine, in their structures and were structurally related to gougerotin<sup>6-60</sup> (Fig. 1).

#### Experimental

Melting points were determined with a Yazawa melting point aparatus and were uncorrected. Optical rotation was measured with a Perkin-Elmer model 241 polarimeter. IR spectrum was recorded with a Hitachi 260-10 infrared spectrophotometer. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were measured with Jeol JNM-GX400 spectrometer. TLC was performed on a silica gel (Kieselgel 60  $F_{254}$ , Merck) developed with a mixture of BuOH - AcOH -  $H_2O$  (2: 1: 1).

### Acid Hydrolysis of 2

A solution of 2 (hydrochloride, 82 mg) in 8 ml of 6 N HCl was refluxed for 6 hours. The solution was diluted with 72 ml of  $H_2O$  and neutralized with Amberlite IRA-45 (OH<sup>-</sup>). After removal of solid, the aqueous solution was concentrated under reduced pressure to give a pale yellow solid. The residue was dissolved in 1 ml of 50% aq MeOH and applied to a column of Sephadex LH-20. The column was developed with 50% aq MeOH. The eluate was collected in 2.5 ml fractions. Fractions (Nos. 52~58) were combined and concentrated to give a solid (HL-A). The same procedures of fractions (Nos. 52~63) gave a solid (HL-B). A solution of HL-A was passed through a column of Amberlite CG-50 (NH<sub>4</sub><sup>+</sup>, 5 ml). The column was developed with  $H_2O$  (2 ml fractions). Fractions (Nos.  $3\sim 5$ ) were combined and concentrated to dryness. The residue was applied again to a column of Sephadex LH-20 and eluted with 50% aq MeOH (1.25 ml fractions). Fractions (Nos.  $90\sim93$ ) were combined and concentrated to dryness. The residue was applied again to a column of Sephadex LH-20 and eluted with 50% aq MeOH (1.25 ml fractions). Fractions (Nos.  $90\sim93$ ) were combined and concentrated to give a colorless solid, which was recrystallized from  $H_2O$  - MeOH (1:1) to afford needles of compound 3 (*C*-substance): MP 235°C (dec);  $[\alpha]_{12}^{26} + 4^{\circ}$  (*c* 0.47,  $H_2O$ ) (literature,  $[\alpha]_{25}^{25} + 6^{\circ3}$ ),  $[\alpha]_{20}^{20} + 2^{\circ20}$ ); SI-MS m/z 287 (MH<sup>+</sup>); TLC Rf 0.18. The <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) spectrum was shown in Table 1.

Fractions (Nos. 94~98) were combined and concentrated to give a compound 5: SI-MS m/z 90 (MH<sup>+</sup>); TLC Rf 0.31. All physico-chemical data of 5 were identical with those of sarcosine.

After elution of *C*-substance and sarcosine through a column of Amberlite CG-50 with  $H_2O$ , the column was subsequently washed with 1 N NH<sub>4</sub>OH and H<sub>2</sub>O, then developed with 1 N HCl to afford compound 4. Fractions containing 4 were collected and concentrated to dryness. The residue was desalted on a column of Sephadex LH-20 with 50% aq MeOH to give a hydrochloride of 4: SI-MS m/z 146 (MH<sup>+</sup>); TLC Rf 0.05. Compound 4 was identical with spermidine in all respects.

A solid, HL-B was applied to a column of Sephadex LH-20. The column was developed with 50% aq MeOH (2.5 ml fractions) and fractions (Nos. 61 and 62) were combined and concentrated to give a hygroscopic hydrochloride of **6**:  $[\alpha]_{\rm D}^{33}$  -12.5° (*c* 0.18, H<sub>2</sub>O); SI-MS *m/z* 147 (MH<sup>+</sup>); <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O),  $\delta$  3.99 (1H, t, *J*=5.5 Hz), 3.77 (2H, d, *J*=5.5 Hz); <sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O),  $\delta$  172.3, 158.2, 54.6, 42.5; TLC Rf 0.24. HPLC was shown in Fig. 5. Compound **6** was determined as guanidino-D-alanine.

#### References

- TAKAHASHI, A.; N. SAITO, K. HOTTA, Y. OKAMI & H. UMEZAWA: Bagougeramines A and B, new nucleoside antibiotics produced by a strain of *Bacillus circulans*. I. Taxonomy of the producing organism and isolation and biological properties of the antibiotics. J. Antibiotics 39: 1033~1040, 1986
- 2) IWASAKI, H.: Studies on the structure of gougerotin. Yakugaku Zasshi 82: 1358~1395, 1962
- WATANABE, K. A.; M. P. KOTICK & J. J. FOX: Nucleoside. LXIII. Synthetic studies on nucleoside antibiotics. 3. Total synthesis of 1-(4-amino-4-deoxy-β-D-glucopyranosyluronic acid)cytosine, the nucleoside moiety of gougerotin. J. Org. Chem. 35: 231~236, 1970
- KINOSHITA, T.; Y. KASAHARA & N. NIMURA: Reversed-phase high-performance liquid chromatographic resolution of non-esterified enantiomeric amino acids by derivatization with 2,3,4,6-tetra-O-acetyl-β-Dglucopyranosyl isothiocyanate and 2,3,4-tri-O-acetyl-α-D-arabinopyranosyl isothiocyanate. J. Chromatogr. 210: 77~81, 1981
- 5) TAKAGI, S.; H. TSUKATANI & K. HAYASHI: Syntheses of arginine analogs. I. Synthesis of DL-2-amino-3guanidinopropionic acid. Chem. Pharm. Bull. 7: 616~618, 1959
- KANZAKI, T.; E. HIGASHIDE, H. YAMAMOTO, M. SHIBATA, K. NAKAZAWA, H. IWASAKI, T. TAKEWAKA & A. MIYAKE: Gougerotin, a new antibacterial antibiotic. J. Antibiotics, Ser. A 15: 93~97, 1962
  FOX, J. J.; Y. KUWADA, K. A. WATANABE, T. UEDA & E. B. WHIPPLE: Nucleosides. XXV. Chemistry of
- FOX, J. J.; Y. KUWADA, K. A. WATANABE, T. UEDA & E. B. WHIPPLE: Nucleosides. XXV. Chemistry of gougerotin. Antimicrob. Agents Chemother. -1964: 518~529, 1965
- Fox, J. J.; Y. KUWADA & K. A. WATANABE: Nucleosides. LVI. On the structure of the nucleoside antibiotic, gougerotin. Tetrahedron Lett. 1968: 6029~6032, 1968
- NIMURA, N.; H. OGURA & T. KINOSHITA: Reversed-phase liquid chromatographic resolution of amino acid enantiomers by derivatization with 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate. J. Chromatogr. 202: 375~379, 1980
- 10) DOLAK, L.: The carbon-13 NMR spectrum of gougerotin. J. Antibiotics 32: 1346~1347, 1979